THE MODE OF C-16 HYDROXYLATION IN THE BIOSYNTHESIS OF GITOXIGENIN IN DIGITALIS PURPUREA^{1,2}

K. R. VARMA and E. CASPI

The Worcester Foundation for Experimental Biology, Inc., Shrewsbury, Massachusetts 01545, U.S.A.

(Received 18 November 1969)

Abstract— $(16\alpha^{-3}H)$; $(4^{-14}C)$ -Pregnenolone (^{3}H) : ^{14}C ratio 3·15) was administered to two *Digitalis purpurea* plants and the biosynthesized digitoxigenin (^{3}H) : ^{14}C ratio 3·17) and gitoxigenin (^{3}H) : ^{14}C ratio 3·1) were isolated. The results indicate a direct replacement of the 16β -hydrogen of pregnenolone by a hydroxyl group in the biosynthesis of gitoxigenin.

INTRODUCTION

THE MODE of hydroxylation of steroids at non-activated secondary carbons by animal tissues and micro-organisms is relatively well understood. The Ample evidence is now available indicating that the incoming hydroxyl assumes the stereochemistry of the displaced hydrogen. Rather surprisingly, little work was carried out on this topic in higher plants. In this paper we concern ourselves with the gross stereochemical aspects of hydroxylation of steroids in higher plants. It will be shown that the introduction of the 16β hydroxyl in the biosynthesis of gitoxigenin from pregnenolone in *Digitalis purpurea* proceeds by the direct displacement of the 16β proton.

RESULTS AND DISCUSSION

 $16\alpha^{-3}$ H-Pregnenolone was prepared by the catalytic tritiation of 16-dehydropregnenolone acetate.⁸ The product obtained was equilibrated with base and purified by paper and thin-layer chromatography. The homogeneous $16\alpha^{-3}$ H-pregnenolone was mixed with 4- 14 C-pregnenolone and an aliquot of this material (Ia) was diluted with nonradioactive material. The dilute $(16\alpha^{-3}$ H); $(4^{-14}$ C)-pregnenolone (Ia) was crystallized several times and the 14 C specific activity and the 3 H: 14 C ratio remained constant (Table 1). Equilibration of the

¹ Part X in the series "The Biosynthesis of Plant Sterols"; for part IX, see K. R. VARMA, J. A. F. WICKRAMA-SINGHE and E. CASPI, J. Biol. Chem. 244, 3951 (1969).

² This work was supported by grants AM12156, HE10566 and K3-16614 from the National Institutes of Health.

³ M. HAYANO, in Oxygenases (edited by O. HAYASHI), p. 182, Academic Press, New York (1962).

^{4a} R. I. Dorfman, K. Yamasaki and M. Dorfman, *Biogenesis and Action of Steroid Hormones*, pp. 126, 132, 140, 205, 252 and 309, Geron-X, California (1968).

^{4b} R. I. DORFMAN and F. UNGAR, *Metabolism of Steroid Hormones*, pp. 123, 124 and 382, Academic Press, New York (1965).

⁵ W. CHARNEY and H. L. HERZOG, Microbial Transformations of Steroids, Academic Press, New York (1967).

⁶ A. A. AKHREM and U. A. TITOV, *Microbial Transformations of Steroids*, Nauka Publishing House, Moscow (1965).

⁷ E. CASPI, P. J. RAMM and R. E. GAIN, J. Am. Chem. Soc. 91 4012 (1969); P. J. RAMM and E. CASPI, J. Biol. Chem. 244, 6064 (1969).

⁸ W. H. PERLMAN, Biochem, J. 66, 17 (1957).

Table 1. The ³H: ¹⁴C ratios and the ¹⁴C specific activities of diluted radioactive pregnenolone (1a) and 7-keto pregnenolone acetate (IV)

	³H:¹⁴C ratio	dpm/mg of ¹⁴ C
Pregnenolone		No. of the Party o
Crude	3.4	527
1st crystallization	3.1	550
2nd crystallization	3.1	551
3rd crystallization	3.2	539
4th crystallization	3.15	543
Pregnenolone (equilibrated)		
1st crystallization	3.1	563
2nd crystallization	3.1	550
7-Keto-pregnenolone acetate		
1st crystallization	3.1	500
2nd crystallization	3.1	530
3rd crystallization	3.05	538

mixed sample with base did not change the ¹⁴C specific activity and ³H: ¹⁴C ratio. To test whether isotopic hydrogen is present at the allylic carbon 7, the acetate (Ib) was converted to the 7-ketone⁹ (IV). The oxidation proceeded without loss of isotopic hydrogen (Table 1).

The $(16\alpha^{-3}\text{H})$; (4^{-14}C) -pregnenolone $(13\cdot 8~\mu c^{-14}\text{C})$ was administered to two *Digitalis purpurea* plants as previously described. After 33 days, the plants were harvested and processed. In the distribution of radioactivity in the various extracts is given in Table 2. The residue of the chloroform extract, containing the bulk of the cardenolide-glycosides, was hydrolyzed. The digitoxigenin (II) and gitoxigenin (IIIa) were isolated by a combination of chromatographic procedures described previously. In the identity and homogeneity of the two cardenolides were confirmed by co-crystallization of the free alcohols (II and IIIa) with cold materials to constant specific activity and constant H: The Durity of the gitoxigenin was further corroborated by conversion to the acetate IIIb (Table 3).

It is evident that the ³H:¹⁴C ratios of the administered pregnenolone (Ia) (³H:¹⁴C ratio 3·15), the digitoxigenin (II) (³H:¹⁴C ratios 3·15) and the gitoxigenin (IIIa) (³H:¹⁴C ratio 3·1) are essentially identical. Oxidation of the gitoxigenin (³H:¹⁴C ratio 3·1) to gitoxigenone¹⁴

Table 2. Distribution of tracers in extracts of D , purpurea leaves after the
ADMINISTRATION OF $(16\alpha^{-3}H)$ - $(4^{-14}C)$ -PREGNENOLONE $(1a)(13.8 \mu c; 30.5 \times 10^6 \text{ dpm})$
¹⁴ C; ³ H; ¹⁴ C ratio 3·15)

Extract	Radioactivity \times 10 ⁻⁶ dpm	³ H: ¹⁴ C ratio
Leaf washings	4:5	3.3
Ligroin	0.08	3-1
Chloroform	6.07	2.7
Chloroform-ethanol (2:1)	0.89	2.3
Chloroform-ethanol (3:2)	2.13	2.5

Percent recovery of radioactivity (corrected for the unabsorbed activity): 35·42% (14C) and 29·86% (3H).

(3H: ¹⁴C ratio 0·6) proceeded with the loss of ca. 81 per cent of tritium (Table 3). Equilibration of the gitoxigenone with base removed the residual amount of the isotopic hydrogen which was located at C-15. The presence of tritium at C-15 is not surprising in view of the previous reports on the distribution of isotopic hydrogens in catalytically hydrogenated olefins. ¹⁵, ¹⁶

The results indicate that in the biosynthesis of gitoxigenin in D. purpurea the incoming 16β -hydroxyl assumes the stereochemistry of the displaced 16β -hydrogen. The gross aspects of the mechanism of hydroxylation of steroids at secondary carbons in D. purpurea are thus similar to those operating in animal tissues and microorganisms.

⁹ C. W. MARSHALL, R. E. RAY, I. LAOS and B. RIEGEL, J. Am. Chem. Soc. 79, 6308 (1957).

J. A. F. WICKRAMASINGHE, P. C. HIRSCH, S. M. MUNAVALLI and E. CASPI, Biochem. 7, 3248 (1968)
J. A. F. WICKRAMASINGHE, E. P. BURROWS, R. K. SHARMA, J. B. GREIG and E. CASPI, Phytochem. 8, 1433 (1969).

¹² J. von Euw and T. Reichstein, Helv. Chim. Acta 47, 711 (1964).

¹³ E. CASPI and D. O. LEWIS, Science 156, 519 (1967).

¹⁴ R. Tschesche and G. Grimmer, Chem. Ber. 93, 1477 (1960).

¹⁵ D. K. Fukushima and T. F. Gallagher, J. Am. Chem. Soc. 77, 139 (1955).

¹⁶ E. A. EVANS, Tritium and its Compounds, pp. 143 and 263, D. van Nostrand, Princeton, N.J. (1966).

TABLE 3. THE	H: 14C RATIOS AND 14C SPECIFIC ACTIVITIES OF THE BIOSYNTHESIZE	ED
DIGIT	OXIGENIN (2), GITOXIGENINS (IIIa) AND THEIR DERIVATIVE	

	³ H: ¹⁴ C ratio	14C dpm/mg
Digitoxigenin		
1st crystallization	3.15	1073
2nd crystallization	3.1	815
3rd crystallization	3.2	887
4th crystallization	3.2	867
5th crystallization	3.2	898
Gitoxigenin		
Crude	3.1	
1st crystallization	3.0	725
2nd crystallization	3.0	631
3rd crystallization	3.1	547
4th crystallization	3.1	528
5th crystallization	3.0	525
Gitoxigenin acetate		
1st crystallization	3.1	592
2nd crystallization	3.2	463
3rd crystallization	3.3	. 445
4th crystallization	3.2	438
Gitoxigenone		
Purified by TLC	0.60, 0.6	
After base treatment	0.08	

EXPERIMENTAL

Chromatography

Silica gel (Merck HF_{254 + 366}) was used for TLC in the indicated solvents. Strips of Whatman No. 1 paper (40 cm long) were used for paper chromatography. In the case of Bush systems, chromatographic papers were pretreated prior to development.^{13,17} A Vanguard Automatic Chromatogram Scanner, Model 880, was used for scanning the plates for radioactivity. The chromatographically purified precursors and products were further checked for homogeneity (and identity) by co-crystallization to constant specific activities (¹⁴C) and ³H: ¹⁴C ratios.

Counting 18

Counting was carried out in a Packard Tri-carb automatic liquid scintillation spectrometer, series 314E. The samples were dissolved in 15 ml of a scintillator solution of toluene containing 4 g of 2,5-diphenyloxazole and 100 mg of p-bis-[2-(5-phenyloxazolyl)]-benzene per 1000 ml.

16α-3H-pregnenolone⁸ was obtained from Drs. Shlomo Burstein and Marcel Gut of this Foundation. The sample was purified by paper chromatography and TLC (benzene-EtOAc, 3:1) until homogeneous. 4-14C-Pregnenolone was purchased from New England Nuclear Corporation, Boston, Massachusetts. The homogeneity of the compound was established by TLC in benzene-EtOAc (3:1).

Gitoxigenin and digitoxigenin were purchased from Fluka Company, Basel, Switzerland.

Administration of a Mixture of $(16\alpha^{-3}H)$; $(4^{-14}C)$ -pregnenolone to Digitalis purpurea Plants

The purified $16\alpha^{-3}$ H-pregnenolone (40 μ c) and 4^{-14} C-pregnenolone (13·9 μ c) were mixed and an aliquot (27,000 dpm of 14 C) was diluted with nonradioactive pregnenolone (50 mg). The sample was crystallized from EtOAc and the 14 C specific activity and 3 H: 14 C ratio were constant in four crystallizations (Table 1). The remaining solids and mother liquors were pooled, dissolved in 80% aq. ethanol containing 5% potassium

¹⁷ I. E. Bush and K. Crowshaw, J. Chromatog. 19, 114 (1965).

¹⁸ E. Caspi, J. A. F. Wickramasinghe and D. O. Lewis, *Biochem. J.* 108, 499 (1968).

hydroxide (10 ml) and the mixture was refluxed for 3 hr. The recovered pregnenolone had an unchanged ³H: ¹⁴C ratio (Table 1).

The undiluted $(16\alpha^{-3}\text{H})-(4^{-14}\text{C})$ -pregnenolone (13·8 μc ; 30·5 × 10⁶ dpm ¹⁴C) (³H:¹⁴C ratio 3.15) was administered to two young *D. purpurea* plants as previously described.¹⁰ After 33 days, the plant was cut above the soil and processed.^{10,11,18} The distribution of the radioactivity in the various extracts is given in Table 2.

Hydrolysis of the Chloroform Extract 10-12

An aliquot of the extract $(2.02 \times 10^6 \text{ dpm})$ was dissolved in methanol (4 ml), then H_2SO_4 (0.1 N; 4 ml) was added and the mixture was refluxed for 20 min. Most of the methanol was removed under reduced pressure and the remaining aqueous phase was warmed for 20 min at 70°. To the cooled solution a saturated solution of NaCl (10 ml) was added and the mixture was extracted with EtOAc $(4 \times 30 \text{ ml})$. The combined extract was washed sequentially with dilute saline, dilute aq. NaOH, again with saline, and then dried and reduced to a residue $(2.02 \times 10^6 \text{ dpm}^{14}\text{C})$.

Isolation of $(16\alpha^{-3}H)$ - $(4^{-14}C)$ -digitoxigenin (II)

The above residue was fractionated on TLC (EtOAc-benzene, 4:1) and the products in the zones corresponding to II and IIIa were recovered (EtOAc, soxhlet).

The digitoxigenin fraction $(2.9 \times 10^5 \text{ dpm}^{14}\text{C})$ was diluted with cold material (5 mg) and purified by TLC as previously described ^{10, 11} to yield a homogeneous product $(1.7 \times 10^5 \text{ dpm}^{14}\text{C})$. A portion of the radiochemically pure residue $(4.6 \times 10^4 \text{ dpm}^{14}\text{C})$ was further diluted with cold material (38 mg) and crystallized several times from ethyl acetate. The results are summarized in Table 3.

Isolation of $(16\alpha^{-3}H)$ - $(4^{-14}C)$ -gitoxigenin (IIIa). The residue of the crude gitoxigenin (IIIa) zone was fractionated by a combination of paper and thin-layer chromatography until it was homogeneous^{10,11} (2·3 × 10⁴ dpm ¹⁴C). The residue was diluted with cold gitoxigenin and crystallized several times from EtOAc (Table 3).

 $(16a^{-3}H)$ - $(4^{-14}C)$ -gitoxigenin-3-monoacetate (IIIb). Crystalline radioactive gitoxigenin (IIIa) (15 mg) was acetylated in the conventional manner (pyridine-Ac₂O at room temp for 16 hr). The product obtained (IIIb) was homogeneous by TLC (EtOAc-benzene, 1:1) and was crystallized from methanol (Table 3).

Oxidation of gitoxigenin. A Gitoxigenin (40 mg) was suspended in HOAc and then a mixture of CrO₃ (30 mg), water (0·2 ml) and HOAc (2 ml) was added and the mixture was stirred for 2 hr at ambient temperature. Within a few minutes the steroid dissolved. The reaction mixture was diluted with water and the product was extracted with CHCl₃ (3 × 75 ml). The combined extract was washed with water (4 × 25 ml), saline, dried and reduced to a residue (45 mg). The crude solid was fractionated by TLC (benzene–EtOAc, 1:1) and the product in the major zone was recovered (25 mg). The homogeneous residue resisted crystallization and an amorphous powder was obtained: ν_{max} (CHCl₃) 3460, 1780, 1745, 1705, 1630 cm⁻¹; λ_{max} (MeOH) 221 nm (ϵ , 7000); mass spectrum: m/e 368 (M-18; <1%), 325 (M-61; 27%), 324 (M-62; 100%), 310 (M-76, 8%), 309 (M-77, 33%).

To a solution of $(16\alpha^3 H)$ - $(4^{-14}C)$ -gitoxigenin (IIIa) (15 mg) in pyridine (1·5 ml) a mixture of CrO₃ (50 mg) water (0·1 ml) and pyridine (1·5 ml) was added and the solution was stored for 16 hr at room remperature. The product was recovered in the conventional manner to yield, after purification by TLC (EtOAc-benzene, 1:1), gitoxigenone (9 mg). The product gave an identical i.r. and mass spectrum as that obtained in the cold run. The counting results are given in Table 3.

$(16\alpha^{-3}H)$ - $(4^{-14}C)$ -7-Keto-pregnenolone-3 β -acetate (IV)

A dilute sample of the radioactive 3H : ${}^{14}C$ pregnenolone (30 mg; $1\cdot6\times10^4$ dpm ${}^{14}C$) was acetylated in the usual manner. The homogeneous acetate (TLC, EtOAc-benzene, 1:3) was treated with a mixture of HOAc, Ac₂O and chromic acid by the method of Marshall *et al.*? The recovered product was submitted to TLC (EtOAc-benzene, 1:4) and then crystallized from EtOAc-Et₂O to yield the 7-ketone (IV) (21 mg); m.p. $154-155^\circ$; ν_{max} (KBr) 3390 (w), 1725, 1705, 1665, 1625, 1240 cm⁻¹; λ_{max} (MeOH) 235 nm (ϵ , 16,800) (reported: m.p. $152/153^\circ$; λ_{max} (MeOH) 236 nm (ϵ , 13,200)). The ketone (IV) was crystallized to constant specific activity (${}^{14}C$) and constant ${}^{3}H$: ${}^{14}C$ ratio (Table 1).

Acknowledgements—The authors are indebted to Drs. Shlomo Burstein and Marcel Gut for the sample of 16α - 3 H-pregnenolone.